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Dynamics and Complexity

Historically

Simple systems generate simple behavior
e.g. the pendulum
orbits of planets in the solar system

Complex systems generate complex behavior
e.g. the economy

In between iIs In between
e.d., NMR spectroscopy



Dynamics since the 1970s

Simple systems can generate complex-looking
behavior.
Chaos
Planets are not so simple after all, asteroids
Complex systems can generate simple behavior
Fixed points, limit cycles
New types of behavior can emerge when
coupling systems
Spiral waves in tachycardia and fibrillation.



Components of Dynamics

A state that can change in time.
a sufficient description of the system

A rule/mechanism/process that describes what
the new state will be given any existing state.
Discrete time: finite-difference equations
Continuous time: differential equations

Possibly a set of inputs that connect the system
to another one: coupling

The inputs might be considered random, giving a
stochastic dynamical system.



A One-dimensional State
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What Is Linear Dynamics?

The dynamical rule is a proportional
function of the state.

Basic phenomena
Exponential growth, exponential decay
Sine-wave oscillation
Modulated sine-wave oscillation
Combinations of the above

Stability: decays to steady state or grows
to infinity. There’s no in-between behavior
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Linear Dynamics with an Input

Proportional response: doubling the input

leads to doubling the output.

Sine-wave Input gives a sine-wave output.
Respiration and RSA in HRV

Superposition and decomposition:

Break input into components, find response to
each component, then add together to find the
overall response.

Fourier decomposition.



Ways that Linear Models are Wrong for
HRV

Proportional response?

Limits to ventricular response to pacing. If the
response were proportional, the heart rate
would be unlimited. [See Leon Glass’s session
on complex arrhythmogenesis.]






Phenomena Linear Models Can’t Capture

Stability and a Single point attractor?

The same cardiac system can have utterly
different types of sustained behavior depending
on the Initial state, e.g. NSR, tachycardia,
fibrillation.

Entrainment
Frequency Pulling



Nonlinear Interactions of HRV Oscillators: Model
w/strong 10 second rhythm
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“All models are wrong, some models are
useful.” —George Box

In some situations, linear models might be more useful
than nonlinear ones.

State might be so complicated that we can’t construct
any detalled proxy for it, so the dynamics are effectively
random.

Outside inputs may dominate internal dynamics.
e.g. random-interval breathing

Nonstationarity
IS there enough repetition to see the dynamical rule?
IS the state changing according to a constant dynamical rule or is
the rule changing in time?
Parsimony. Linear models can capture behavior with few
parameters. Short data sets, changing dynamics limit
our ability to see nonlinearity.



Can We Reject Linear Dynamics?
The Surrogate Data Technique

Surrogate data are random data that are
consistent with a linear model that
matches the data.

Generated with fourier synthesis.

Can you distinguish between the surrogate
data and the actual data?

Surrogate data can be made stationary, by
design.



Surrogates as a Sanity Check
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Acthrhythms: Chaos or circadian?




HR/Respiration Coupling

One-dimengional, nonlinear determinism charaeterizes
heart rate pattern during paced respiration
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HR/Resp Coupligg (cont)
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Fig. 3. Graphic explanation of embed-
ding of rotation angiss. A-R intervals
Ly, .., L1z ocourring during 1 respira.
tory cyele TT (A} ere embadded two-
dimensionally, leading to 12 pairs of
succesaive R-R intervals (L,.lq), ...,
(LyzLys) (B). Rotation angles (&) are
defined sround a center point (L)
Maximal henrtbents are cloge to ¢ =
1/4, arvd minimal heartbents are closs
ta® = 54 To get a condnuous graph of
the circle mep (), we shifted all ardi-
natas (angles at time r + 1) larger than
1.5 by —2.0. Because of the periodicity
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of ail rircle maps.
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HR/Resp Coupling w/Surrogates
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Air Pressure (Arb. units)
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Successive Spectra
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The Spectrogram ¢
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Some Approaches to Nonlinear Dynamics

Constructing a proxy state: lag embedding
Example: sigha
..., 713,168}162}57//61,|65, 74@, 88, ...
pecomes a sequence of vectors
(65,57|,68)
(74,,61,,|62)
)
)

State transition

State transition
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1
1
(83,65||57
(88, 74,61

State transition




Model Construction

Embed time series

Infer dynamical rule from present->future
state-transition pairs
Many model architectures possible:

Nonlinear Prediction

How well does the model predict the time series
itself?






Squid Return Maps




Entropy and Dimension

Treat the trajectoryasa ok 4k |
probability cloud. "W AW A\ | W
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Information content of
the probability.

Treat the trajectory as
an object
Quantify the shape,
e.g., scaling
properties.
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The State Need Not be Numerical:
Symbolic Dynamics

Can assign a “letter” to each
measurement, e.g. U, S, D depending on
whether the IBI went “up”, “down” or
“steady.”

Embedding amounts to looking at the
“words” of consecutive letters in the signal.

Concepts of information and state
transition still apply.



Conclusion

Simple systems
simple behavior
complex-looking behavior

Complex systems
simple behavior
complex-looking behavior
complex behavior

We're now pretty good at extracting information from

simple signals via linear analysis and complex-looking
signals via nonlinear analysis.

But we’re not yet so good at dealing with genuinely
complex signals.

Is HRV complex-looking or just complex?



Nonlinear time
series analysis
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